Summary Chapter 2

Basic vector operations Need to know

$$grad(p) = \overline{\nabla}p = \begin{pmatrix} \partial \bullet / \partial x \\ \partial \bullet / \partial y \\ \partial \bullet / \partial z \end{pmatrix} p = \begin{pmatrix} \partial p / \partial x \\ \partial p / \partial y \\ \partial p / \partial z \end{pmatrix}$$
$$div(\overline{V}) = \overline{\nabla} \cdot \overline{V} = \begin{pmatrix} \partial / \partial x \\ \partial / \partial y \\ \partial / \partial z \end{pmatrix} \cdot \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$
$$curl(\overline{V}) = \overline{\nabla} \times \overline{V} = \begin{pmatrix} \partial / \partial x \\ \partial / \partial y \\ \partial / \partial z \end{pmatrix} \times \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = \begin{pmatrix} \partial V_x \\ \partial V_x \\ V_y \\ V_z \end{pmatrix} = \begin{pmatrix} \partial V_z / \partial y - \partial V_y / \partial z \\ \partial V_x / \partial z - \partial V_z / \partial x \\ \partial V_y / \partial x - \partial V_x / \partial y \end{pmatrix}$$

Gradient of a scalar You only need to know the formula for Cartesian coordinates

$$\overline{\nabla}p = \frac{\partial p}{\partial x}\overline{i} + \frac{\partial p}{\partial y}\overline{j} + \frac{\partial p}{\partial z}\overline{k}$$
$$\overline{\nabla}p = \frac{\partial p}{\partial r}\overline{e}_r + \frac{1}{r}\frac{\partial p}{\partial \theta}\overline{e}_\theta + \frac{\partial p}{\partial z}\overline{e}_z$$
$$\overline{\nabla}p = \frac{\partial p}{\partial r}\overline{e}_r + \frac{1}{r}\frac{\partial p}{\partial \theta}\overline{e}_\theta + \frac{1}{r\sin\theta}\frac{\partial p}{\partial\varphi}\overline{e}_\theta$$

Directional derivative of a scalar Need to know

$$\frac{dp}{ds} = \frac{\partial p}{\partial x}\frac{dx}{ds} + \frac{\partial p}{\partial y}\frac{dy}{ds} + \frac{\partial p}{\partial z}\frac{dz}{ds} = \overline{\nabla}p \cdot \frac{dr}{ds} = \overline{\nabla}p \cdot \overline{n_s}$$

Divergence of a vector field You only need to know the formula for Cartesian coordinates

Cartesian:	$\overline{\nabla} \cdot \overline{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$
Cylindrical:	$\overline{\nabla} \cdot \overline{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta} + \frac{\partial A_z}{\partial z}$
Spherical:	$\overline{\nabla} \cdot \overline{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$

Stokes Theorem Need to know $\oint_C \overline{A} \cdot d\overline{s} \equiv \iint_S (\overline{\nabla} \times \overline{A}) \cdot d\overline{S}$

Divergence Theorem Need to know $\bigoplus_{S} \overline{A} \cdot d\overline{S} \equiv \iiint_{V} (\overline{\nabla} \cdot \overline{A}) dV$

Gradient Theorem Need to know $\oint_{S} p \, d \, \overline{S} \equiv \iint_{V} \overline{\nabla} p \, d \mathcal{V}$

Substantial derivative Need to know

 $\frac{D}{Dt} = \frac{\partial}{\partial t} + \left(\overline{V} \cdot \overline{\nabla} \right)$

Continuity equation Need to know

 $\frac{\partial}{\partial t} \iiint_{V} \rho dV + \iint_{S} \rho \overline{V} \cdot d\overline{S} = 0$ Integral form $\frac{\partial \rho}{\partial t} + \overline{\nabla} \cdot \rho \overline{V} = 0$ Differential form $\frac{D\rho}{Dt} + \rho \overline{\nabla} \cdot \overline{V} = 0$ Substantial derivative form

Momentum equation You need to know what the terms in these models physically mean

$$\frac{\partial}{\partial t} \iiint_{V} \rho \overline{V} dV + \iint_{S} (\rho \overline{V} \cdot d\overline{S}) \overline{V} = -\iint_{S} p d\overline{S} + \iiint_{V} \overline{f} \rho dV + \overline{F}_{\text{visc}} \quad \text{Integral form}$$

$$\frac{\partial (\rho \overline{V})}{\partial t} + (\overline{\nabla} \cdot \rho \overline{V}) \overline{V} = -\overline{\nabla} p + \rho \overline{f} + \overline{F}_{\text{visc}} \quad \text{Differential form}$$

$$\rho \frac{D \overline{V}}{D t} = -\overline{\nabla} p + \rho \overline{f} + \overline{F}_{\text{visc}} \quad \text{Substantial derivative form}$$

$$\frac{\partial}{\partial x}(\rho u^{2}) + \frac{\partial}{\partial y}(\rho uv) + \frac{\partial}{\partial z}(\rho uw) = -\frac{\partial p}{\partial x}$$

$$\frac{\partial}{\partial x}(\rho vu) + \frac{\partial}{\partial y}(\rho v^{2}) + \frac{\partial}{\partial z}(\rho vw) = -\frac{\partial p}{\partial y}$$

Euler Equation
$$\frac{\partial}{\partial x}(\rho wu) + \frac{\partial}{\partial y}(\rho wv) + \frac{\partial}{\partial z}(\rho w^{2}) = -\frac{\partial p}{\partial z}$$

Energy equation You need to know what the terms in these models physically mean

$$\iiint_{V} \rho q dV + \dot{Q}_{\text{visc}} - \bigoplus_{S} p d\overline{S} \cdot \overline{V} + \iiint_{V} \rho \overline{f} dV \cdot \overline{V} + \dot{W}_{\text{visc}} =$$

$$\frac{\partial}{\partial t} \bigoplus_{V} \rho \left(e + \frac{1}{2} \overline{V} \cdot \overline{V} \right) dV + \bigoplus_{S} \left(\rho \overline{V} \cdot d\overline{S} \right) \left(e + \frac{1}{2} \overline{V} \cdot \overline{V} \right)$$
Integral form
$$\frac{\partial}{\partial t} (\rho E) + \overline{\nabla} \cdot \rho E \overline{V} = \rho \dot{q} - \overline{\nabla} \cdot p \overline{V} + \rho \overline{f} \cdot \overline{V} + \dot{Q}'_{\text{visc}} + \dot{W}'_{\text{visc}}$$
Differential form

$$\rho \frac{D(e+V^2/2)}{Dt} = \rho \dot{q} - \overline{\nabla} \cdot (p\overline{V}) + \rho(\overline{f} \cdot \overline{V}) + \dot{Q}'_{\text{visc}} + \dot{W}'_{\text{visc}}$$

Substantial Derivative form

Streamline Need to know

$$\overline{V} \times d\overline{s} = \begin{pmatrix} vdz - wdy \\ wdx - udz \\ udy - vdx \end{pmatrix} = 0$$
 In 3D space
$$\frac{dy}{dx} = \frac{v}{u}$$
 In 2D space

Vorticity Need to know

	$\left(\frac{\partial w}{\partial w}\right)$	$\frac{\partial v}{\partial v}$	
	$\overline{\partial y}$	$\overline{\partial z}$	
$\overline{\xi} - 2\overline{\omega} -$	ди	∂w	$-\overline{\nabla} \times \overline{V}$
$\varsigma = 2\omega =$	∂z	∂x	- • ~ •
	$\frac{\partial v}{\partial v}$	ди	
	∂x	∂y	

Circulation Need to know

$$\Gamma = -\oint_{C} V \cdot ds$$

$$\Gamma = -\iint_{S} \left(\overline{\nabla} \times \overline{V} \right) \cdot d\overline{s}$$

Stream function Need to know

$$\rho u = \frac{\partial \psi}{\partial y} \qquad \rho V_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
$$\rho v = -\frac{\partial \psi}{\partial x} \qquad \rho V_{\theta} = -\frac{\partial \psi}{\partial r}$$
$$u = \frac{\partial \psi}{\partial y} \qquad V_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
$$v = -\frac{\partial \psi}{\partial x} \qquad V_{\theta} = -\frac{\partial \psi}{\partial r}$$

Compressible form (Cartesian / Cilindrical)

Incompressible form (Cartesian / Cilindrical)

Velocity components in Cartesian coordinates Need to know

$$u = \frac{\partial \phi}{\partial x}, \quad v = \frac{\partial \phi}{\partial y}, \quad w = \frac{\partial \phi}{\partial z}.$$

Velocity components expressed in the potential in polar coordinates Need to know

$$u_r = \frac{\partial \phi}{\partial r}$$
$$u_{\theta} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$$